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Abstract 

Weather-related yield losses endanger food security and inhibit the establishment of a resilient farming 

system for more than 30 million people working in the agricultural sector of Tanzania. If these losses were 

quantified, this information could be used for risk transfer instruments to stabilize smallholder farmers’ 

incomes in Tanzania. Here, we develop a combined application of a process-based and statistical crop model 

and demonstrate that this approach significantly improves the yield assessment accuracy by 74% at district 

level. Furthermore, it allows to separate weather-related yield losses (covered by the risk transfer 

instruments) from the management-related losses. Using our approach, we calculate that only 27% of the 

actual maize yield losses in Tanzania are directly attributable to weather. Considering this and the model 

uncertainty, the economic costs for weather-related yield losses are 71 million US$ p.a. (23 US$ ha–1) for 

maize production in Tanzania.  
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Abbreviations 

AYI Adjusted maize yield index 

°C Degrees Celsius 
EPIC Environmental Policy Integrated Climate (crop model) 

Eq. Equation 

ETP Potential evapotranspiration  

Fig. Figure 
GRF Crop growth regulating factor 

ha Hectare 

i Individuals (districts) with 𝑖 = 1, … , 𝑁 

j Vector of exogenous variables, with 𝑗 = 1, … , 𝐽 

kg N Nitrogen fertilization

kg P2O5  Phosphorus fertilization 

LAI Leaf area index 

m Meter 
nw non-weather-related impacts in yields  
NSE Nash–Sutcliffe efficiency 

p Significance level 
PM Process-based crop model 

PDM Panel data model 

PREC Precipitation 
r Correlation coefficient 

R² Coefficient of determination 

RCM Random coefficient model 
RESET Regression equation specification error test  

SI Supplemental information 

SM Statistical model 
SR Solar radiation 

SSD Semi standard deviation  

SSA Sub-Saharan Africa 
STSM Separate time-series model 

SWIM Soil and Water Integrated Model 

t ha
–1

 Metric tons per hectare 

t Time (years), with 𝑡 = 1, … , 𝑇 
Tab. Table 

TMP Temperature 

u Error term 
p.a. Per annum 

VPD Vapor pressure deficit 

we Weather impacts on yields 
x Exogenous variable 

y Maize yield (endogenous variable) 

𝛽 Parameter  

𝜀 Residuals of observed and SWIM yields 
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Introduction 

In Sub-Saharan Africa (SSA), crop yields commonly have high variability on a very low average yield 

level. This hinders smallholder farmers investing in agronomic management to stabilize and increase 

their crop yields and keeps them in the loop of poverty and food insecurity. Often, these smallholder 

farmers do not have the financial capacity to adjust their agronomic management when extreme weather 

conditions strike (1, 2). An improved agronomic management could contribute to stabilize smallholder 

farmers’ incomes and make their agricultural production less vulnerable to weather extremes. Besides 

these farm-individual perils, widespread weather perils (termed systemic risk) strongly harm the 

agricultural sector as it was the case during the El Niño drought of 2014–15 and 2015–16 in eastern and 

southern Africa. Without proper risk transfer instruments, systemic risks make smallholder farmers 

highly vulnerable to crop yield losses (3). Risk transfer instruments (like micro insurances) have high 

potential as an adaptation strategy towards climate change and systemic weather perils (4, 5), because 

they can stabilize smallholder farmers’ incomes, prevent indebtedness, and indemnify their livelihoods. 

However, widespread implementation of such insurance schemes is hindered by uncertain and unreliable 

assessments of crop yield losses, notably for cropping conditions in SSA. 

 

In Tanzania, maize (Zea mays L.) is the most widely cultivated crop. Cropping conditions are 

characterized by high spatial and temporal heterogeneity (6, 7). The average annual precipitation ranges 

in the south–west lowlands from 700 to 2,000 mm and in the northern semi-arid highlands from 400 to 

700 mm. The monthly average temperature is between 18 and 28 °C throughout the year. Despite this 

favorable climate, the mean Tanzanian maize yield is rather low at 1.3 t ha
–1

. Typically for SSA, yields 

are more often influenced by agronomic management than by weather impacts (8, 9). In comparison, the 

impact of agronomic management on yield variability is smaller in regions with a high-input agronomic 

management (10). In SSA, a low and unbalanced fertilizer supply characterizes the agronomic 

management and represents the major yield limitations (11, 12). Besides weather and fertilization, 

several other factors influence maize yields (13). Among these factors are, notably, limited access to 

arable land (14), labor, credits, markets, and technology (11, 15), pests, weeds, and diseases (16), or 

fertilizer subsidies (17–19).  

 

Crop models can contribute to gaining insights about the impacts of weather, soil, agronomy, and socio-

economy on crop yields. These insights of the crop models make it possible to separate the weather-

related yield losses from the total yield losses. In most global and regional crop yield assessments, 

process-based (20–22) and statistical models (6, 10, 23, 24) are used alternatively. Estes et al. (25) show 

the advantages and weaknesses of these two model types for South-African crop yield assessments. 

Lobell et al. (26) and Lobell and Burke (27) separately use a statistical model to corroborate process-
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based yield assessments. Liu at al. (28) and Lobell and Asseng (29) show in an inter-comparison the 

similarities of both model types. However, to our knowledge no combined application of both model 

types has so far been published. Here, we use a process-based model to identify purely weather-

attributable yield variability, while our statistical model captures the remaining non-weather-related yield 

variability. The ability of statistical models to account for non-weather-related impacts allows us to 

identify those yield impacts beyond the weather-attributable yield impacts. We combine the advantages 

of both model types to enhance the robustness of yield assessments and to integrate scarce observed yield 

data efficiently. This makes our approach suitable for other regions of SSA with also limited observed 

yield information. 
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Results and discussion 

The combination of a process-based and statistical model increases the assessment accuracy of yield 

variability. The combined application of both model types significantly (p < 0.01, Fisher z-

transformation, 796 observations) increases the reproduction of annual yield variability (Fig. 1). While 

the solely process-based assessment attains r = 0.05
 NS

 (R² = 0.00), the goodness of fit increases to 

r = 0.86
***

 (R² = 0.74) for the combined assessment (Pearson correlation; 
NS

 p > 0.1, 
*
 p ≤ 0.1, 

**
 p ≤ 0.05, 

***
 p ≤ 0.01) [all correlation coefficients and the corresponding R² are in SI Tab. S.1, S.2, and Fig. S.7]. 

Moreover, the out-of-sample validation achieves a correlation of r = 0.38
***

 (R² = 0.15) and the 

corresponding statistical tests show that the model provides robust and valid results (see SI S.2.3.2 for 

details). However, the solely application of a statistical model to identify the weather-attributable yield 

variability significantly (p < 0.01, Fisher z-transformation) reduces the goodness of fit to r = 0.77 

(R² = 0.59) for the estimation and to r = 0.10 (R² = 0.01) for the validation (see SI S.2.3.3 and Fig. S.8 

for further details). This demonstrates that the information of the process-based and the statistical model 

are complementary. Since weather has often nonlinear and more complex impacts on crop yields, linear 

and log-linear statistical models are only limitedly able to capture the weather-attributable yield 

variability and therefore, often underestimate the weather impacts. 

 

 

Fig. 1. Increase in goodness of fit due to the combined application of a process based (PM) and a statistical model 

(SM). The blue points show the accuracy of a solely application of the PM. The red points show the accuracy of a 

consecutive application of PM and SM (PM-SM). 

 

Our process-based model satisfactorily captures the average national maize yield (modeled: 1.29 t ha
–1

 

and observed: 1.27 t ha
–1

) between 2003 and 2010. The process-based modeled yields show regional 
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yield patterns of low and high yields similar to the observed district yields (Fig. 2). Aggregated to agro-

ecological zones (see SI S.1.2 Fig. S.2), the modeled yields correlate spatially with the observed yields at 

r = 0.57
 NS

 (R² = 0.32). The semi-arid regions in the center and the north–eastern regions as well as the 

sub-humid regions in the south are clearly distinguishable in the modeled and observed yield maps. 

However, the annual yield variability is insufficiently reproduced by the process-based model for entire 

Tanzania, a result also found for other regions and process-based crop models (30). Nevertheless, the 

water scarce regions are reproduced with higher accuracy than the regions with sufficient water supply 

(SI Fig. S.5 and S.6). Since process-based models consider only a limited number of processes in their 

model set-up, they may neglect possibly relevant ones (31). In particular, socio-economic impacts on 

agronomic management practices, which are important in SSA (14, 32), are usually not considered by 

process-based models. Our consecutively applied statistical model resolves the residual yield variability 

by using the non-weather variables maize acreage, paid subsidies on crop production, and urea 

application (see SI S.1.4 for further information). As a result, our combined modeling approach is able to 

reproduce the actual yield variability; this justifies the separation of weather and non-weather-related 

yield losses.  

 

Fig. 2. Observed (left) and process-based modeled (right) average maize yields for Tanzanian districts in the period 

2003-2010. No data is marked in dark gray. 

 

Generally, our combined approach explains 74% of the total observed yield variability (R² = 0.74). 

Considering process-based models alone might cause them to be rejected as of limited use, if they fail to 

satisfactorily explain total yield variability. However, as shown, statistical models can be used to explain 

the remaining yield variability due to agronomic management and socio-economic factors. This 

demonstrates the general relevance and usability of process-based models. However, the aggregation of 
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farm yields to the district level by the Tanzanian statistical office might have a filtering effect (33). 

Nevertheless, our combined approach contributes a pragmatic solution to cover both agronomic 

management and socio-economic yield impacts in addition to weather impacts. Moreover, the process-

based model in our combined approach allows assessments of yield losses for changed agronomic 

management practices and altered weather conditions, which are in agreement with plant-physiological 

processes.  

 

Indirect weather-triggered effects are negligible for Tanzania. Besides both impact factor groups, we 

also investigate whether indirect weather-triggered effects (like pests and diseases) explain the remaining 

yield variability. Similar to the combination of the two model types, we estimate a consecutive weather-

driven statistical model with the residuals of the non-weather-driven statistical model as the endogenous 

variable (see SI Fig. S.4). The weather-driven statistical model explains the residual yield variability by 

precipitation, vapor pressure deficit, and solar radiation of the district-specific growing season. This 

consecutive weather-driven statistical model explains yield variability with r = 0.92
***

 (R² = 0.84). 

However, the validation decreases from r = 0.38
***

 (R² = 0.15) [only process-based and non-weather-

driven statistical model] to r = 0.33
***

 (R² = 0.11) [process-based, non-weather, and indirect weather-

triggered statistical model]. In a further step, we remove the non-weather-driven statistical model. 

Considering only the indirect weather-triggered effects significantly (p < 0.01, Fisher z-transformation) 

reduces goodness of fit to r = 0.78
***

 (R² = 0.60) for the estimation and to r = 0.04
NS

 (R² = 0.00) for the 

validation, respectively. Hence, we conclude that the indirect weather-triggered effects do not contribute 

model robustness. In the following we only consider the non-weather-related impacts to explain the 

residual yield variability. The results indicate that indirect weather-triggered impacts only have a minor 

influence on crop yields at the district scale. However, since process-based crop models are calibrated to 

field trials with a prevalent pest, disease and weed pressure, it is possible that these impacts are already 

implicitly included in our model. This could be the reason for the indirect weather-triggered impacts 

appearing insignificant. If there were a significant and robust influence of these indirect weather-

triggered effect (due to pest and diseases), it would be allocated to the weather-related part (because of 

the correlation with the weather) and thus, be indemnified. 

 

Weather-related yield losses constitute only one-third of total maize yield losses in Tanzania. To 

stabilize smallholder farmers’ incomes if yield losses – here defined as yield anomaly below the mean 

yield level according to Eq. 2 and Finger (34) – occur which are attributable to weather impacts. Our 

separation of maize yield loss factors shows dissimilar shares of weather-related (27%) and non-weather-

related (73%) yield losses for Tanzania on average. Across districts, weather-related yield variability 

varies between 4% (in sub-humid south–east Tanzania) and 57% (in the semi-arid central and north–
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west, see Fig. 3). In total, the average and maximum weather-related yield losses are 0.11 and 0.41 t ha
–1

 

and the non-weather-related yield losses are 0.34 and 1.70 t ha
–1

, respectively. In line with the results of 

Lesk et al. (8), this indicates that agronomic management and socio-economic factors have a 

substantially higher impact on maize yields in Tanzania (see also pre-analysis of significant non-weather-

related yield effects in SI 2.3.1). 

 

 

Fig. 3. Weather-related yield losses in t ha–1 p.a. (top), the share of weather-related yield losses in comparison to 

the total yield losses in % (bottom).  

 

Our weather-attributable yield losses are directly usable to calculate costs weather induced yield 

variability on the Tanzanian crop production at district scale. The costs are the product of the annual and 
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district-specific weather-related yields losses (i), its corresponding maize acreage (ii), and the Tanzanian 

annual maize prices (iii). For the Tanzanian maize production, we calculate that the costs of weather-

related yield losses are 71 million US$ p.a. (23 US$ ha
–1

). In comparison, the costs of the total yield 

losses are 212 million US$ p.a. (85 US$ ha
–1

). This means that 66% (141 million US$ p.a.) of the loss 

costs are attributable to non-weather-related yield.  

 

 

Our adjusted crop yield index considers the uncertainty of the modeling approach. Since both crop 

model types still have limitations, we consider the model uncertainty of our modeling scheme. On the 

basis of weather-related yield variability, we calculate an adjusted yield index, which is adjusted to the 

district-specific accuracy of the model approach (see methods for further information). Depending on the 

district scale model accuracy (R²), we use weighted shares of modeled weather-related and observed 

yields for our adjusted yield index (Eq. 3). Where the model is able to fully explain actual yield 

variability (by weather and non-weather-related impacts), the adjusted yield index only uses the modeled 

weather-related yield variability of the process-based model (see Arusha, Kilimanjaro in Fig. 4). The 

share of observed yield variability increases in the index (for instance in Dodoma or Dar es Salaam) by 

decreasing the goodness of fit of our combined modeling approach. Due to the consideration of the 

model uncertainty, the economic costs increase to 141 million US$ p.a. (49 US$ ha
–1

).  

 

 

Fig. 4. Observed and modeled yields for agro-ecological zones. The weather-related part is represented by the PM 

and the combination of weather and non-weather-related by the PM-SM modeling approach. The adjusted yield 

index is calculated as R²-weighted product of the observed and modeled yield variability. The R² is the goodness of 

fit for the modeled and the observed yields. 
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Conclusions 

The combination of the statistical and process-based crop modeling increases the accuracy of assessing 

actual yield variability. In our approach, we capture the plant-physiological yield development within the 

process-based model and large amounts of the remaining, unexplained yield variability by using a 

statistical model. The improvement in accuracy and robustness makes our approach suitable for crop 

production risk assessments on a district scale.. We show that the suggested approach can contribute 

assess the weather and non-weather related production risk in Tanzania. This can reduce the vulnerability 

to severe yield losses for smallholder farmers and enhance farmers’ ability to cope with climate change 

and altering weather patterns and contribute to long-term food security by incentivizing higher 

investments into agricultural production techniques.  
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Materials and methods 

We apply a combined process-based (PM) and statistical (SM) modeling approach (PM-SM) to capture 

weather-attributable and non-weather-related yield variability. The PM captures influences on yield 

variability directly attributable to weather. The residual, non-weather-related yield variability of the 

process-based model is then modeled by a SM (see also SI Fig. S.3). 

 

Process-based modeling of the weather-attributable yield variability 

As PM we use the Soil and Water Integrated Model (SWIM). SWIM is an eco-hydrological model to 

capture river discharge, land use, and agricultural crop yield development (35, 36). The crop module of 

SWIM is a modified approach of the Erosion Productivity Impact Calculator (EPIC) model (see also 

SI S.1.3 for further description). SWIM computes crop yields as a product of total above-ground biomass 

and the harvest index. Any divergence from the optimal growing conditions reduces biomass growth by 

stress factors within a minimum function. Considered stress factors are heat stress and water, nitrogen, 

and phosphorus scarcity. SWIM considers several agronomic management measures like fertilization, 

planting and harvest dates, and crop variety selection by maturity groups.  

 

Statistical modeling of the non-weather-related yield variability 

For our statistical model, we use a similar statistical approach to the approach used by Gornott and 

Wechsung (37). The SM captures spatial and temporal heterogeneity in the residual yield variability of 

the PM. The SM estimates district-specific yield influences within a logarithmic function (Eq. 1). We use 

the statistical model with the residuals (𝜀𝑖𝑡) between the observed (𝑦𝑖𝑡) and the process-based modeled 

yields (𝑦𝑖𝑡
𝑃𝑀) as the endogenous variable and a vector of 𝐽 exogenous variables (𝑥𝑗𝑡𝑖). The exogenous 

variables are maize acreage (in ha), paid subsidies on crop production (in US$), and urea application (in 

tons for entire Tanzania). Time-constant effects like land tenure security or market access (see SI S.1.4.3) 

are captured by the district-individual intercept (𝛽0𝑖). 

 

𝜀𝑖𝑡 = log 𝛽0𝑖 + ∑ 𝛽𝑗𝑖 log  𝑥𝑗𝑖𝑡

𝐽

𝑗=1

+ log 𝑢𝑖𝑡 , 

 

 

(1) 

with 𝛽 as parameters and 𝑢𝑖𝑡 as error term for 𝑇 years (𝑡 = 1, … , 𝑇) and 𝑁 spatial units (𝑖 = 1, … , 𝑁). 

 

Maize yield losses and adjusted yield index 

The mean weather and non-weather attributable yield loss (average yield anomaly below mean yield 

level) is calculated as semi-standard deviation (𝑆𝑆𝐷𝑖
𝑏𝑒𝑙𝑜𝑤, Eq. 2) for each district: 
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𝑆𝑆𝐷𝑖
𝑏𝑒𝑙𝑜𝑤 = √(𝑇 − 1)−1  ∑  

𝑇

𝑡=1

min((𝑦𝑖𝑡 − �̅�𝑖), 0)
2

, 

 

 

(2) 

with �̅� as arithmetic average yield across the T years.  

 

The average indemnity claims are the product of 𝑆𝑆𝐷𝑏𝑒𝑙𝑜𝑤 , maize acreage and maize price. In our case, 

the critical value for indemnity payments is the average yield. But other critical values, like the 25%-

percentile and 10%-percentile, are also applied. 

 

The maize yield adjusted yield index (𝐴𝑌𝐼) is calculated by Eq. 3. As adjusted maize yield  index (𝐴𝑌𝐼), 

we use a weighted product of process-based modeled weather-related and observed yield variability. 

Depending on the accuracy of the combined model approach to explain the total yield variability, we 

weigh the share of modeled weather-related and total observed yield variability by the model R². Where 

the model is able to fully (R² = 1) explain total yield variability (by weather and non-weather-related 

impacts), only the weather-related modeled yield variability is used as the index. With decreasing R², the 

share of observed yield variability increases in the index (Eq. 3). The adjusted yield index is normalized 

with the average yield and the factor 100.  

 

𝐴𝑌𝐼𝑖𝑡 = 100 ((
𝑦𝑖𝑡

𝑃𝑀

�̅�𝑖
𝑃𝑀) R𝑖

2 + (
𝑦𝑖𝑡

�̅�𝑖
) (1 − R𝑖

2)) 
(3) 
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Supplemental information  
 

S.1 Materials and methods  

S.1.1. Data 

S.1.2.1 Yield information 

We use observed farm maize yields supplied by the Ministry of Agriculture, Food Security and 

Cooperatives (38) for Tanzanian districts (𝑁 = 116) and the period 2003 to 2010. These observed yield 

data contain some implausible outliers, which are far beyond the genetic yield potential of maize. 

Schlenker and Lobell (11) show that the direct use of such observed yields can amplify the uncertainty of 

yield assessments. Thus, we eliminate implausible outliers in the observed yield dataset by using 

reasonable upper yield ceilings. The ceiling is 25% above the local yield calculated by our process-based 

model assuming a fertilization of 120 kg N and 40 kg P2O5 ha
–1

. After adjusting the yield dataset 

(removing implausible outliers or too short time series), we still work with N = 104 districts. Since this 

dataset has also some missing values, in total our dataset contains 796 observed yield values. The 

average of the original dataset is 1.5 t ha
–1

 and the standard deviation is ±2.0 t ha
–1

, while the average of 

the adjusted dataset is 1.3 t ha
–1

 with a standard deviation of ±0.9 t ha
–1

. 

 

S.1.2.2 Weather information 

We use reanalyzed weather information (WFDEI ERA-Interim) of 319 grid points across Tanzania from 

1979 to 2012 (39). To justify the usability of the dataset, we compare the reanalyzed weather dataset with 

nearest weather data from 16 stations (40) of the period 1970 to 2006. The plots in Fig. S.1 exemplarily 

show the comparison of the yearly-averaged, intra-annual precipitation distribution for five reanalyzes 

points and observed weather stations. In general, the seasonality of the observed weather data is 

reproduced by reanalyzed weather data for all weather stations. The 6-day moving average shows that 

the reanalyzed weather data satisfactorily represent the measured data: The Nash–Sutcliffe model 

efficiency coefficient (NSE, see also Chipanshi et al. (41) for the calculation) for precipitation (PREC) is: 

0.77, NSE for minimum temperature (TMPmin): 0.74, and NSE for maximum temperature (TMPmax): 

0.31.  
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Fig. S.1. Spatial and intra-annual distribution of reanalyzed and observed precipitation patterns. The iso-

precipitation lines are yellow; the black boundaries are the regions (thick lines) of Tanzania with its districts (thin 

lines). The weather stations are the white points a–e. The acronym WFDEI stands for the reanalyzed and TMA for 

the observed weather data. 

 

S.1.2.3 Soil and agronomic management information 

The soil information for the 319 weather grid points is taken from the FAO-74 soil classification 

according to Dewitte et al. (42) and the ILRI (43) soil map. We use the fertilization amounts according to 

Thornton et al. (44) as input for the process-based model. For the statistical model, we use the variables 

acreage maize (district scale), paid agricultural subsidies, and urea application (both on national scale) 

provided by the Ministry of Agriculture, Food Security and Cooperatives (38). Finally, we use agro-

ecological zones (45) for the classification of semi-arid and sub-humid regions (Fig. S.2). The division of 

the maize growing season (planting to harvesting periods) is taken from FAO Crop Calendar (46). For 

maize prices, we use the national price statistics from the FAO Stat (47).  
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Fig. S.2. Agro-ecological zones and Tanzanian districts.  

 

S.1.2. Process-based crop modeling 

We use the Soil and Water Integrated Model (SWIM) as process-based model. The processes of SWIM 

are calculated on a daily time step for spatial points, which are representative for larger regions (sub-

national boundaries, hydrotopes, field trials, or grid cells) (36, 48). For our investigation, we apply 

SWIM on grid cell information of 0.5° (approximately 50km at the equator).  

 

S.1.3.1 Crop yield modeling by SWIM is based on the EPIC crop module 

EPIC is a worldwide applied process-based crop model (21, 49), which is able to reproduce the cropping 

conditions in SSA (20). The model computes crop yields as a product of the total above-ground biomass 

and the harvest index. While the harvest index increases until harvesting, the above-ground biomass 

growth is calculated as the product of the crop-specific parameter for converting energy to biomass and 

the photosynthetic active radiation. The photosynthetic active radiation is a function of the incoming 

solar radiation and the leaf area index (LAI) of the corresponding crop. Any divergence of these optimal 

growing conditions reduces the biomass growth by the stress factors heat stress and insufficient water, 

nitrogen, and phosphorus supply within a minimum function. The plant water supply is determined by 

precipitation and water withdrawn by evaporation, surface runoff, infiltration, and plant water uptake, 

respectively. The EPIC crop module embeds a nitrogen and phosphorus cycle. The nitrogen cycle 

includes mineralization, nitrification, and denitrification. The phosphorus cycle includes phosphorus 
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adsorption and mineralization. The nitrogen and phosphorous supply is added by organic and mineral 

fertilization.  

 

S.1.3.2 Modifications in the EPIC crop module 

In the EPIC crop module within SWIM, we use mostly the standard maize parametrization of the EPIC 

model (36). For Tanzanian maize yield assessments, we adjust the temperature sensitivity, harvest index, 

maximum LAI, and required heat units to maturity. Folberth et al. (20, 50, 51) show that this 

parametrization is valid for the cropping conditions in SSA. The crops in SWIM are not parametrized on 

one or more individual crop varieties. Information about crop varieties would be very helpful for an 

accurate representation of local or regional cropping conditions. However this information seems to be 

unavailable for Tanzania. The temperature sensitivity is corrected according to Rötter and van de Geijn 

(52) to 8 °C basic and 28 °C optimum temperature. According to Gaiser et al. (53) and McClung (54), 

the harvest index of local, unimproved crop varieties is lower than for improved varieties. Since seed 

saving of local varieties is common in Tanzania (55, 56), we take a HI of 0.35 (53). Folberth et al. (50) 

show that a HI parameter of 0.35 leads to reasonable results for entire SSA. Depending on the 

environmental and crop genetic conditions, the maximum LAI varies highly in SSA (57). Following 

Gaiser et al. (53), we use a maximum LAI of 6.0 m
2
 (leaf) m

–2
 (ground). The maize maturity groups are 

covered by the heat units. The heat units are the accumulated growing temperature (actual temperature 

reduced by the basis temperature) sum from seeding to maturity of the crop. For Tanzania as a whole, we 

use medium-maturity varieties with 2800 °C heat units (20, 58). In our model, the management is 

uniform for all grid points. The variables harvesting dates, nitrogen dynamics in the soil (e.g., leaching), 

or other soil properties (e.g., water holding capacity, rooting depth) vary across space (grid-specific) in 

our process-based model. Planting dates and fertilizer application are uniform across districts. The 

planting date is set relatively early (December 10
th
). In the process-based model, the plant germination 

starts with the first rains and the plant will not die within the first 30 days also with insufficient water 

supply. Due to this, we implicitly account for differences in the planting dates. The harvest date is 6 days 

after maturity (or after this, the next day without precipitation). According to the World Bank (59) 

survey, the average Tanzanian maize fertilization is 23.0 kg N and 0.0 kg P2O5 ha
–1

. For smallholder 

farmers, Thornton et al. (44) describe an inorganic fertilization of 5.0kg N and no phosphorus 

fertilization. Following the later, we apply an inorganic fertilization of 5.0 kg N and 0.0 kg P2O5 ha
–1

, 

because the fertilization is rather poor than sufficient (60, 61). In particular in semi-arid, tropical regions, 

the nutrient uptake is highly influenced by the soil moisture. According to Folberth et al. (20) and 

Harmsen (62), we included in the Liebig minimum function an interaction between water and nutrient 

stress to calculate the crop growth regulating factor (GRF, Eq. S.1). The fertilization is applied 13 days 

after sowing.  
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𝐺𝑅𝐹 =  min(𝑇𝑀𝑃𝑆𝑡𝑟𝑒𝑠𝑠 , 𝑊𝑎𝑡𝑒𝑟𝑆𝑡𝑟𝑒𝑠𝑠)    min(𝑁𝑆𝑡𝑟𝑒𝑠𝑠 , 𝑃2𝑂5
𝑆𝑡𝑟𝑒𝑠𝑠) 

 

(S.1) 

S.1.4. Statistical crop models 

We use an approach, which is similar to the statistical regression model introduced by Gornott and 

Wechsung (37) for the case of Germany. For our approach, we use the same conceptual framework for 

the variable selection and the same statistical methods and consider both non-weather and weather 

impacts on maize yields. However, we use a different functional form and variable transformation, which 

fits better to the Tanzanian weather and agronomic conditions.  

 

S.1.4.1 Statistical method  

We use three different statistical regression methods to capture the spatial and temporal heterogeneity 

among N districts and T years: separately estimated time-series models (STSMs), panel data models 

(PDMs), and random coefficient models (RCMs). The STSMs estimate independently a separate time-

series model for all districts. Each STSM explains the yield variability by a district-individual intercept 

and district-individual parameters. The PDMs capture directly temporal and spatial variability by one 

parameter set valid for N considered districts. RCMs contain both one parameter set for all N districts 

and district individual parameters. Since these parameters depend on each other, the RCMs are estimated 

by the restricted maximum likelihood method instead of the ordinary least squares method used for 

STSMs and PDMs.  

 

S.1.4.2 Modeling approach  

Combined process-based and statistical modeling approach to assess weather and non-weather-

related yield variability by using a logarithmic function (PM
we

-SM
nw

-SM
we2

): The process-based 

model (PM) is supposed to explain the direct weather-related yield variability (we). The residual yield 

variability (𝜀𝑖𝑡 = 𝑦𝑖𝑡 − 𝑦𝑖𝑡
𝑃𝐵𝑀) of the observed (𝑦𝑖𝑡) and process-based modeled yields (𝑦𝑖𝑡

𝑃𝑀) is explained 

by (i) non-weather-related (nw) and (ii) indirect (second-order) weather-triggered yield influences (we2) 

like pests and diseases. (iii) Since our dataset only has limited degrees of freedom (𝑇 = 8), we estimate 

non-weather-related and indirect weather-triggered impacts in two consecutive statistical models. This 

means that the non-weather-related statistical model uses the residuals of the process-based model. In the 

consecutive step, the weather-driven statistical model uses the residuals of the non-weather-related 

statistical model as the endogenous variable. This approach enables the consideration of both impact 

factor groups without the risk that any impact factor is considered twice. While the STSMs are directly 

estimated on district scale, the PDMs are estimated on regional scale. Due to this, PDMs have more 

available degrees of freedom. (iv) This allows the consideration of both non-weather-related and indirect 
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weather-triggered impacts in a single PDM. RCMs require the same amount of degrees of freedom as the 

STSMs, thus, they are applied like the STSM for approach i–iii. In total, we compare four approaches to 

explain the PM residuals (ε
we

): (i) only i non-weather-driven, (ii) only weather-driven, (iii) non-weather 

and weather-driven (in two consecutive statistical models), and (iv) non-weather and weather-driven in 

one model: 

 

(i) PM
we

-SM
nw

 (ε
we

): one statistical model to capture the non-weather-related impacts on ε
we

 (Fig. 

S.3), 

(ii) PM
we

-SM
we2

 (ε
we

): one statistical model to capture indirect weather-triggered impacts on ε
we

,  

(iii) PM
we

-SM
nw

 (ε
we

)-SM
we2

 (ε
nw

): two consecutive statistical models to captures non-weather-

related impacts on ε
we

 and the residuals of that model (ε
nw

) by indirect weather-triggered 

impacts (Fig. S.4), 

(iv) PM
we

-SM
nw

&SM
we2

 (ε
we

): one statistical model to capture both non-weather-related and 

indirect weather-triggered impacts on ε
we

 (only investigated with PDMs). 

 

We use a logarithmic function as the basic functional form with the residuals (𝜀𝑖𝑡) as endogenous 

variables (Eq. S.2). The exogenous variables are either the non-weather-related or indirect weather-

triggered variables. The 𝐽 exogenous variables are transformed to logarithmic values. The terms 𝛽 are the 

parameters, 𝑢 is the error term, 𝑡 (with 𝑡 = 1, … , 𝑇) is the time-index, and 𝑖 denotes the spatial index 

(with 𝑖 = 1, … , 𝑁). The endogenous variable is considered in untransformed values, because the negative 

residual values allow no logarithm. We use exogenous variables as logarithmic values, because this 

transformation achieves better results than the untransformed ones. We also investigate several other 

transformations (see S.2.3.3), however, the fixed effects transformation achieves the best goodness of fit.  

𝜀𝑖𝑡
𝑖𝑑/𝑤𝑒2

= log 𝛽0𝑖 + ∑ 𝛽𝑗𝑖 log  𝑥𝑗𝑖𝑡

𝐽

𝑗=1

+ log 𝑢𝑖𝑡  

 

(S.2) 
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Fig. S.3. Flowchart of the combined model approach (PMwe-SMnw): (1) Application of the process-based crop 

model (PM) for the region-specific agro-ecological conditions. (2) Separation of weather-related yield variability 

and (3) calculation of residual yield variability. (4) Application of the statistical crop model (SM) to capture the 

residual, non-weather-related yield variability by agronomic and socio-economic impacts. (5) Separation of non-

weather-related yield variability. (6) Combination of weather-related and non-weather-related yield variability to 

compare the modeled yields with the observed yields. 
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Fig. S.4. Flowchart of the combined model approach (PMwe-SMnw-SMwe2): (1) Application of the process-based 

crop model (PM) for the region specific agro-ecological conditions. (2) Separation of weather-related yield 

variability and (3) calculation of residual yield variability. (4) Application of the statistical crop model (SM) to 

capture the residual, non-weather-related yield variability by agronomic and socio-economic impacts, (5) 

separation of non-weather-related yield variability. (6) Calculation of residual yield variability (from the SM). (7) 

Application of the statistical crop model (SM) to capture the residual, indirect weather-triggered yield variability 

(5) separation of indirect weather-triggered yield variability. (9) Combination of weather-related, non-weather-

related and indirect weather-triggered yield variability to compare the modeled yields with the observed yields. 

 

S.1.4.3 Variable selection 

In general, we use the same weather and non-weather exogenous variables for our statistical model 

approaches. The approaches are driven with a set of either non-weather or weather variables. As non-

weather exogenous variables, we use maize acreage (in ha per district), urea application (in metric tons 

for entire Tanzania), and paid subsidies on crop production (in US$). The maize acreage is thought to 

capture agronomic management decisions, land use and land availability (14). This includes crop rotation 

preferences (for more maize) and the economic suitability of maize production. Moreover, yield can be 

interpreted as land productivity (63) and changes in acreage might go ahead with changes in soil quality, 

because farmers plant on marginal soils in case of an acreage expansion (64). This will have a direct 

impact on crop yields. Urea application (in metric tons for entire Tanzania) should cover fertilizer 
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availability and application (65). The application of fertilizer is already modeled by the process-based 

model. However, because information about annual variation of fertilizer application is not available at 

district level, fertilizer application is kept constant over time and only used to reproduce the average 

yield level. As a result annual yield variation attributable to fertilizer application cannot be reproduced 

by the process-based model. Thus, the statistical model is needed to explain also the yield variability 

attributable to changes in fertilizer application. For SSA, Ward et al. (32) use as economic variables 

nitrogen and phosphorus fertilizer as well as irrigation. Since only 1.8 – 3.3% of the Tanzanian cropland 

is irrigated (66, 67), we haven’t included this variable. Other production factors, e.g., machinery (68), 

also seems to be of lower importance for Tanzania. Pauw and Thurlow (69) show that agricultural 

growth stagnates since the 1990s, because of low investments in infrastructure and machinery. The 

variable paid subsidies on crop production (in US$) addresses the efficiency of the fertilizer and seeds’ 

subsidy system and the socio-economic behavior of farmers (19). Fertilizer and seed subsidies tripled the 

maize yields in Malawi within three years (18). Such subsidies are also disbursed in Tanzania, however, 

with a smaller yield increase (17). Tanzania has launched an input subsidy program in 2003 with the 

main objective to facilitate fertilizer and improved seeds’ use in remote areas. This program was changed 

in 2008 with the aim to raise maize and rice production. The program was designed to increase 

Tanzania’s household and national food security and to response to the fertilizer prices spikes in 2007 

and 2008. Because of the disbursed subsidies for improved seeds and fertilizer, the farmers have adjusted 

their agronomic management with direct implications on crop yields (70). 

 

Since market access, land tenure security or access to extension are rather time-constant in Tanzania (71, 

72), the impact of these variables is captured by the intercept of our statistical model and the other 

parameters are not biased (no omitted variable bias). The spatial heterogeneity of these variables is also 

captured by the district-individual intercepts. Thus, our model accounts for time-invariant and spatial 

heterogeneous impacts of market access, land tenure security or access to extension. 

 

As weather variables, we use solar radiation, precipitation, and the vapor pressure deficit. The solar 

radiation (SR) maps the potential growth. The variables PREC and vapor pressure deficit (VPD, Eq. S.3 

for calculation) should capture deviations from the optimal water supply. The VPD is calculated by 

TMPmax and TMPmin (73). As indirect weather-triggered impacts, these variables should address plant 

health (pests, weeds, and diseases) and agronomic management, which is collinear with the weather 

variables (16). 

 

𝑉𝑃𝐷 = 6.11 (exp 
(

17.269 𝑇𝑀𝑃max
237.3 + 𝑇𝑀𝑃max

)
− exp

(
17.269 𝑇𝑀𝑃min
237.3 + 𝑇𝑀𝑃min

)
) 

(S.3) 
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The Tanzanian maize growing season lasts approximately from December to June. Within Tanzania 

there is a high heterogeneity of the planting and harvesting dates (46). Therefore, the weather variables 

are aggregated by the district-specific maize growing season. Because of limited degrees of freedoms, 

the variables are not further divided in sub-parts of growing season. 

 

S.1.5. Validation 

To test the robustness of the process-based and statistical models, we conduct a validation with observed 

yields, which are not considered in the model calibration. Process-based models endogenously compute 

crop yields (without the consideration of observed yields). This allows for a direct comparison of the 

observed and modeled yields. Statistical models require observed yields for their estimation. To validate 

statistical models with unconsidered observed yields, we apply an out-of-sample cross-validation. This 

validation reduces the estimation dataset by the values of the year t subsequently for all years T. For each 

year, the parameters are estimated for the reduced dataset (validation parameter). Finally, the yields of 

the removed years are calculated by the validation parameter and the exogenous variable values of the 

removed years (41). 

 

S.1.6. Aggregation of results 

The yields of the process-based model are calculated on grid scale and aggregated from grid-cell scale to 

district scale to make them comparable with the observed yields. For the comparison of spatial patterns, 

we aggregate the district yields to agro-ecological zones. The humid areas of Tanzania are neglected, 

because these areas only cover tiny parts of the Tanzanian land surface. Due to the aggregation, the 

goodness of fit increases retrospectively, because district individual yield anomalies are filtered out (33). 

All statistical models are applied on district level; we did not aggregate the exogenous variables, because 

this would lead to information losses due to a reduced variability of the estimation dataset (74). To show 

the adjusted yield index, we aggregate the yield index from district to regional scale by the arithmetic 

average (main article Fig. 4). 

 

S.1.7. Software 

Our statistical models are estimated with the software R. We use the package plm for the PDMs, the 

package lme4 for the RCMs and the package lmtest for the statistical tests. The maps are generated with 

the R package ggplot2. The process-based model SWIM is written in fortran.  
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S.2 Further results and discussion 

S.2.1. Crop physiological yield assessment by SWIM 

The yield level of 1.3 t ha
–1

 is satisfactorily captured by the process-based model SWIM. However, the 

patterns of low and high yield regions and the inter-annual variability are only poorly (r = 0.05) captured 

by our process-based model (district-level correlation map in Fig. S.5 and yield levels for each year and 

district in Fig. S.6). Since process-based models consider only a limited number of processes in their 

model set-up, they may neglect possibly relevant processes like intercropping, tillage practices. 

Moreover, an important additional shortcoming of these models might be the lack of management 

information – e.g., growing season settings, fertilizer application – (30). This might be one reason for our 

unexplained residual yield variability. Another reason might be that the development of these models 

lags behind the rapidly changing agricultural sector – caused by climate change or technological 

development – (31). However, Fig. S.5 shows that the water scare regions are covered with higher 

accuracy than the regions with sufficient water supply. This shows that the model is sensitive for the 

weather-related influences on crop yields.   

 

 
Fig. S.5: Correlation (Pearson’s r) of observed maize yields and only process-based modeled yields (left) or 

process-based and statistical modeled yields (right) at district scale.  
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Fig. S.6. Observed (first and third column) and process-based modeled (second and fourth column) yields on 

district scale for each year of the period 2003-2007. 

 

S.2.2. Results for the statistical modeling approach  

S.2.2.1 Model robustness and selection 

The results of the PM
we

-SM
nw

-SM
we2

 approach (Eq. S.2) are shown in Tab. S.1 and S.2. For our 

modeling scheme, we use the results of the STSMs row i. The non-weather-related and indirect weather-
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triggered STSMs (iii) achieve the highest goodness of fit for the estimated yields (r = 0.92). The 

goodness of fit for the STSM with solely non-weather-related impacts (i) is slightly lower (r = 0.86), as is 

also the case for the solely indirect weather-triggered impacts (ii) (r = 0.78). The STSMs show stronger 

indirect weather-triggered impacts on district scale than the PDM on national scale. This can be 

explained by the fact that weather-triggered effects (like pest outbreaks or plant diseases) appear rather 

locally than on a national scale. The generally lower goodness of fit in the validation can be explained by 

the short (8 years) and sometimes incomplete observed yield time series. Remarkably, the validation 

results decline when the weather-triggered impacts are also considered. While the STSMs attain a 

correlation of r = 0.33 by including the weather-triggered impacts, by excluding these impacts the 

correlation rises to r = 0.38. This is similar for PDMs and RCMs. Consideration of the solely weather-

triggered impacts decreases the validation correlation to r = 0.04 for the STSMs, to r = 0.22 for the 

PDMs, and to r = –0.04 for RCMs. Thus, we conclude that weather-triggered impacts do not contribute 

any model robustness. The consideration of both impact factor groups in single PDMs leads also to 

decreasing estimation and validation power in comparison to the sole consideration of either non-

weather-related or weather-triggered factors. The RCMs’ goodness of fit is close to that of the STSMs. 

While the STSMs estimation is higher than for the RCMs, the validation results of the RCMs are slightly 

higher in comparison to the STSMs. For our risk calculation, we use the STSMs with only non-weather-

related impacts. However, the PDMs with both factor groups are suitable in the case of strong 

multicollinearity.  
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Tab. S.1. Correlation of the observed and estimated or validated yields. The columns (STSMs, PDMs, and RCMs) 

refer to the three statistical methods. All statistical models (SM) are applied on the residuals of the process-based 

model (PM). The SM considers either only non-weather-related (i) or indirect (second-order) weather-triggered 

impacts (ii), non-weather-related and indirect weather-triggered impacts in two consecutive models (iii) or in 

single PDM (iv). The non-weather-driven statistical model is applied without the process-based model (v). The 

non-weather variables are maize acreage, urea application, and paid subsidies on crop production, while the 

weather-triggered variables are SR, PREC, and VPD. 

    

 

 

Tab. S.2. R² of the observed and estimated or validated yields. The other terms similar to Tab. S.1. 

    

 

In general, our results show that most of the yield variability can be explained by our approach. Sole 

consideration of the process-based model might initially challenge its usability. However, by 

 Approach STSM PDM RCM 

 Estimation    

i PM
we

-SM
nw

  0.86 0.55 0.80 

ii PMwe-SMwe2 0.78 0.49 0.68 

iii PM
we

-SM
nw

-SM
we2

  0.92 0.62 0.85 

iv PMwe-SMnw-we2  – 0.65 – 

 Validation    

i PMwe-SMnw  0.38 0.31 0.43 

ii PMwe-SMwe2 0.04 0.22 –0.04 

iii PMwe-SMnw-SMwe2  0.33 0.30 0.40 

iv PMwe-SMnw-we2  – 0.17 – 

 Approach STSM PDM RCM 

 Estimation    

i PMwe-SMnw  0.74 0.30 0.64 

ii PM
we

-SM
we2

 0.60 0.24 0.47 

iii PMwe-SMnw-SMwe2  0.84 0.39 0.72 

iv PMwe-SMnw-we2  – 0.42 – 

 Validation    

i PMwe-SMnw  0.15 0.10 0.19 

ii PMwe-SMwe2 0.00 0.05 0.00 

iii PM
we

-SM
nw

-SM
we2-log

  0.11 0.09 0.16 

iv PMwe-SMnw-we2  – 0.03 – 
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consecutively applying the statistical model (Eq. S.2), we are able to explain the remaining yield 

variability by agronomic management and socio-economy. This justifies the use of the process-based 

model to calculate weather-attributable impacts. As a result, our combined approach contributes an 

important tool for the crop modeling community to cover agronomic management and socio-economic 

impacts and control the non-weather-related yield variability. Our approach allows us to replace district-

specific agronomic management information, which is frequently unavailable in particular in SSA (75), 

by a set of regionally available agronomic management and socio-economic variables. Moreover, 

weather-related yield anomalies coming from other process-based crop models, its ensemble results, or 

additional observed yield data can be easily incorporated. 

 

S.2.2.2 Variable parameters  

The parameters of the statistical models driven by the non-weather and indirect weather-triggered 

variables are shown in Fig. S.7 (PM
we

-SM
nw

-SM
we2

-approch). The non-weather variable urea supply has 

on average a positive yield impact. This means that additional fertilization is positive for the yields. The 

impact of the maize acreage is negative. This is also reasonable since an expansion of the maize acreage 

is achieved through the cultivation of less suitable land. The impact of paid agricultural subsidies is also 

positive. This is also reasonable, because the increase in improved seeds and fertilizer is positive for the 

maize yield (18). However, the paid agricultural subsidies parameter is with 6% added explained yield 

variability smaller than the other two non-weather-related parameters. This could be interpreted as an 

indication that these subsidies have a relatively small impact (this is in line with the literature, e.g., 

Benson et al. (17)). While the weather variables VPD and SR have on average a positive yield impact, the 

PREC yield impact is on average close to zero. Moreover, the range of the district individual parameters 

is higher for the statistical model with indirect weather-triggered variables than for the statistical model 

with non-weather-related variables. This can be explained by the significantly lower explained yield 

variability by the statistical model with indirect weather-triggered variables.  

 

 

 

Fig. S.7. Estimated parameters of the non-weather (left) and weather-driven (right) separate time-series model 

(Eq. S.2). The point is the arithmetic average parameter size of all district models; the lines are the 5% and 95% 

percentile.  
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The consideration of a further exogenous variable increases the goodness of fit of the estimation, 

independently of whether there is an actual contribution by the variable. However, this does not 

necessarily hold true for the goodness of fit of the validation (e.g., 14). The variable selection SR, VPD, 

PREC, TMPmin leads to poorer validation results than for the validation with the variables SR, VPD, 

PREC. This can be explained by the limited degrees of freedom. The variable selection SR, VPD, PREC 

archieves the best validation goodness of fit. The validation goodness of fit decreases by using the 

variables selection TMPmin, SR, PREC, and further by the selection TMPmin, VPD, PREC. 

 

Furthermore, we also analyze several other weather and non-weather variables, however, with lower 

goodness of fit. The additionally tested variables are evapotranspiration (ETPTI by Turc-Ivanov and ETPH 

by Haude), growing degree days (≥ 8 °C, < 30 °C), heat degree days (≥ 30 °C), temperature normalized 

solar radiation, national fertilizer application (diammonium phosphate and calcium ammonium nitrate), 

sprayed area against red locust, and the Tanzanian maize price. 

 

S.2.3. Model robustness and uncertainty 

S.2.3.1 Pre-analysis of significant non-weather-related yield effects 

We apply two PDMs on national scale to investigate whether indirect weather-triggered and socio-

economic effects are in the residuals (unexplained yield variability) of the process-based model. These 

residuals are used as the endogenous variable. The exogenous variables of the first PDM are year 

dummies (to capture year-dependent systemic effects), maize acreage and the weather variables SR, 

ETPTI, and PREC (to capture collinear or omitted weather-triggered effects). As result, all year dummy 

parameters and the acreage are significant with p ≤ 0.01 and the models provide significant correlation 

coefficient of r = 0.40
*** 

(Pearson correlation; 
NS

 p > 0.1, 
*
 p ≤ 0.1, 

**
 p ≤ 0.05, 

***
 p ≤ 0.01). The 

consideration of only weather variables, after removing year dummies and the acreage, reduces the r to 

0.07
*
 and leaves no significant variables p ≤ 0.01. Thus, we conclude that only a small effect from 

weather-triggered impacts remains in the residuals on the national scale. The significant impact of the 

year dummies indicates an uncontrolled impact of non-weather-related variables. 

 

S.2.3.2 Model validity and statistical tests 

For statistical models, the estimation method is permissible if the ordinary least squares assumptions are 

fulfilled and if no explaining variables are neglected (problem of omitted variable bias). Thus, we 

conduct several statistical tests to verify the permissibility of the statistical models, which consider the 

socio-economic yield impacts. The statistical tests are described by Croissant and Millo (77) and Baltagi 

(78). No statistical test exists for the problem of omitted variable bias; however, the regression equation 
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specification error test (RESET) investigates whether quadratic variables are omitted in the model. The 

RESET shows that quadratic variables are not neglected. Only in 4% of the models, quadratic terms 

would be beneficial for the model goodness of fit. We also tested several other variable transformations. 

The chosen log 𝑦𝑡-transformation achieves the highest goodness of fit. The first differences and fixed-

effects transformation as well as the untransformed terms achieve lower goodness of fit. The Breusch–

Godfrey and the Breusch–Pagan test are applied to test against autocorrelation and heteroscedasticity. In 

some cases the model residuals are autocorrelated (29%), but mostly they are not (Breusch–Godfrey 

test). However, autocorrelation can be a problem in macro panels with 𝑇 ≥ 60 and 𝑁 > 𝑇, but is rather 

unproblematic in micro panels (90, p. 102-103). Since our panel has only a time series length of 8 years 

and more spatial than the temporal observations, autocorrelation (Breusch–Godfrey test) seems not 

relevant for our case. Heteroscedasticity appears in 0% (Breusch–Pagan test) of the models. The normal 

distribution of residuals is tested using the Shapiro–Wilk test. In 4% (Shapiro–Wilk test) of the models, 

the residuals are not normal distributed. The weather-driven statistical model is not tested, because the 

results are not further used. 

 

If both weather and management-related factors are estimated in one statistical model, there might be an 

overlap of these factors due to multi-collinear and/or not clearly assignable processes. These are for 

instance, temperature and pests & diseases (16) or precipitation and fertilizer efficiency (79). In 

particular, pests & diseases are (at least partly) manageable, but also depend on weather conditions. If 

such factors are included in a statistical model, this model might not be able to disentangle these 

collinear processes without a certain uncertainty. Due to the design of our approach, the weather-related 

part is assessed in the first step (by the process-based model) and only the remaining yield variability is 

further used for the statistical model assessment. Since process-based models do not face the problem of 

statistical multicollinearity and its outputs are calculated independently from statistical model outputs, 

the fraction of overlap should be relatively small in our analysis. For the claim calculation, our approach 

solely relies on the process-based model, while the statistical model is used to justify the usability of the 

process-based component. Thus, a limited robustness of the statistical model influences neither the 

weather-attributable yields nor claim payouts.  

 

  

S.2.3.3 Functional form and variable transformation 

The limited degrees of freedom do not allow separating the non-weather and weather-related yield 

variability within one statistical model. However, we can separately estimate models for both parts. 

Therefore, we apply the Cobb–Douglas function as a further functional form. The Cobb–Douglas 

function has been well tested for agronomic and economic applications. To linearize the Cobb–Douglas 
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function, all variables are used as a logarithm. We apply the function to capture either the (first-order) 

weather (which are assessed by the process-based model in the main approach) or non-weather-related 

yield impacts. The different variable transformations have been tested previously. The fixed-effects 

transformation (log �̈�𝑡 = log (
𝑦𝑡

�̅�
)) works best, followed by logarithmic transformation (log 𝑦𝑡), 

followed by first differences (Δ log 𝑦𝑡 = log (
𝑦𝑡

𝑦𝑡−1 
)), followed by untransformed values (𝑦𝑡).  

 

log �̈�𝑖𝑡 = log 𝛽0𝑖 + ∑ 𝛽𝑗𝑖  log �̈�𝑗𝑖𝑡

𝐽

𝑗=1

+ log �̈�𝑖𝑡 , with �̈� =  
𝑦𝑖𝑡

�̅�𝑖  
,  

 

(S.4) 

�̅� as arithmetic average of 𝑦𝑡, and respectively for �̈�, �̅�, �̈�, and �̅�. 

 

The utilization of the Cobb–Douglas function with the fixed-effects transformation (Eq. S.4) leads to 

significantly (p < 0.01, Fisher z-transformation) lower goodness of fit in comparison to our used 

modeling approach (Tab. S.1 row i). The weather-driven statistical model (SM
we

) attains a correlation of 

0.77 (0.10) for the STSMs estimation (validation), 0.64 (0.27) for the PDMs, and 0.72 (0.22) for the 

RCMs. Fig. S.8 (left) shows that the weather-driven STSM attains a lower goodness of fit than the main 

(PM
we

-SM
nw

) approach. The average deviation from the observed yields (root mean square error) is for 

the solely weather-driven statistical model 0.53 t ha
–1

 and for the main approach 0.41 t ha
–1

.  

 

The non-weather-driven statistical model (SM
nw

) attains a correlation of 0.83 (0.29) for the STSMs, 0.71 

(0.50) for the PDMs, and 0.79 (0.49) for the RCMs. Fig. S.8 (right) shows that this modeled yields 

(STSM, r = 0.83) scatter slightly more around the observed yields than the yields of the main approach 

(r = 0.86). The root mean square error is 0.46 t ha
–1

 for the solely non-weather-driven statistical model 

and 0.41 t ha
–1

 for the main approach. The small differences between the non-weather--driven statistical 

model and the main approach can be explained by the dominate yield impacts of non-weather effects (see 

also Fig. 3 of the main article: share of weather-related yield losses). The high correlation of non-weather 

and weather-driven statistical models illustrates a statistical overlap between weather- and non-weather-

determined yield variability. This can only be resolved by using a process-based model to capture 

beforehand the weather-related yield variability, notably under these low degrees of freedom.  
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Fig. S.8. Goodness of fit due to the combined application of a process based and a statistical model (PM-SM, red 

points). Left: the green points show the sole weather-driven statistical model (SMwe, Eq. S.4). Right: the yellow 

points show the sole application of the non-weather-drive statistical model (SMnw, Eq. S.4) and the blue points 

show the solely applied process-based model (PM). 

 

We also apply our main approach (PM
we

-SM
nw

) with the Cobb–Douglas function instead of the 

logarithmic function as the functional form. The process-based model is used to capture the (first-order) 

weather-attributable yield impacts and a consecutive statistical model to capture non-weather and 

indirect weather-triggered influences as in the PM
we

-SM
nw

-SM
we2

 approach. The exogenous variables 

(right side of Eq. S.5) are similarly transformed as in the approach of Eq. S.4. As the endogenous 

variable, we take the difference of the transformed observed and process-based modeled yields. As 

transformation, we use the logarithmic fixed-effects. However, this approach achieves the lowest 

goodness of fit. The correlation of the non-weather-driven statistical models achieve an r of 0.33 (0.18) 

for the STSMs, of 0.42 (0.33) for the PDMs, and of 0.31 (0.18) for the RCMs (validation results in 

parentheses). The models for indirect weather-triggered impacts achieve as correlations 0.30 (0.03) for 

STSMs, 0.34 (0.21) for PDMs, and 0.28 (0.19) for RCMs. Thus, we conclude that the Cobb–Douglas 

function is less suitable for the cropping conditions in Tanzania. 

 

log �̈�𝑖𝑡 − log �̈�𝑖𝑡
𝑃𝑀 = log 𝛽0𝑖 + ∑ 𝛽𝑗𝑖  log �̈�𝑗𝑖𝑡

𝐽

𝑗=1

+ log �̈�𝑖𝑡   

 

 

(S.5) 

 
  



           Page 34 of 36 

 

References 

1. C. McIntosh, A. Sarris, F. Papadopoulos, Productivity, credit, risk, and the demand for weather index insurance 
in smallholder agriculture in Ethiopia, Agric. Econ. 44, 399–417 (2013). 

2. M. R. Carter, in Protecting the poor - Microinsurance Compendium vol. II., C. Churchill, D. Reinhard, Eds. (2012). 

3. C. Müller, W. Cramer, W. L. Hare, H. Lotze-Campen, Climate change risks for African agriculture., Proc. Natl. 
Acad. Sci. U. S. A. 108, 4313–5 (2011). 

4. S. Surminski, L. M. Bouwer, J. Linnerooth-Bayer, How insurance can support climate resilience, Nat. Clim. 
Chang. 6, 333–334 (2016). 

5. IPCC, in Impacts, Adaptation and Vulnerability - Contributions of the Working Group II to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change., I. Niang, O. C. Ruppel, M. A. Abdrabo, A. Essel, C. 
Lennard, J. Padgham, P. Urquhart, Eds. (2014), pp. 1199–1265. 

6. P. Rowhani, D. B. Lobell, M. Linderman, N. Ramankutty, Climate variability and crop production in Tanzania, 
Agric. For. Meteorol. 151, 449–460 (2011). 

7. J. Ramirez-Villegas, A. Challinor, Assessing relevant climate data for agricultural applications, Agric. For. 
Meteorol. 161, 26–45 (2012). 

8. C. Lesk, P. Rowhani, N. Ramankutty, Influence of extreme weather disasters on global crop production, Nature 
529, 84–87 (2016). 

9. F. Affholder, C. Poeydebat, M. Corbeels, E. Scopel, P. Tittonell, The yield gap of major food crops in family 
agriculture in the tropics: Assessment and analysis through field surveys and modelling, F. Crop. Res. 143, 106–118 
(2013). 

10. D. K. Ray, J. S. Gerber, G. K. MacDonald, P. C. West, Climate variation explains a third of global crop yield 
variability, Nat. Commun. 6, 1–9 (2015). 

11. W. Schlenker, D. B. Lobell, Robust negative impacts of climate change on African agriculture, Environ. Res. Lett. 
5, 1–8 (2010). 

12. M. van der Velde, C. Folberth, J. Balkovič, P. Ciais, S. Fritz, I. A. Janssens, M. Obersteiner, L. See, R. Skalský, W. 
Xiong, J. Peñuelas, African crop yield reductions due to increasingly unbalanced nitrogen and phosphorus 
consumption, Glob. Chang. Biol. 20, 1278–1288 (2014). 

13. N. Moore, G. Alagarswamy, B. Pijanowski, P. Thornton, B. Lofgren, J. Olson, J. Andresen, P. Yanda, J. Qi, East 
African food security as influenced by future climate change and land use change at local to regional scales, Clim. 
Change 110, 823–844 (2012). 

14. T. Iizumi, N. Ramankutty, How do weather and climate influence cropping area and intensity?, Glob. Food Sec. 
4, 46–50 (2015). 

15. J. Herbold, in Finance for Food: Towards New Agricultural and Rural Finance, D. Köhn, Ed. (Springer Berlin 
Heidelberg, 2014), pp. 199–217. 

16. C. Rosenzweig, A. Iglesias, X. B. Yang, P. R. Epstein, E. Chivian, Climate change and extreme weather events: 
Implications for food production, plant diseases, and pests, Glob. Chang. Hum. Heal. 2, 90–104 (2001). 

17. T. Benson, S. L. Kirama, O. Selejio, The supply of inorganic fertilizers to smallholder farmers in Tanzania 
evidence for fertilizer policy development, IFPRI Discuss. Pap. 1230, 1–48 (2012). 

18. P. A. Sánchez, Tripling crop yields in tropical Africa, Nat. Geosci. 3, 299–300 (2010). 

19. T. S. Jayne, D. Mather, N. Mason, J. Ricker-Gilbert, How do fertilizer subsidy programs affect total fertilizer use 
in sub-Saharan Africa? Crowding out, diversion, and benefit/cost assessments, Agric. Econ. 44, 687–703 (2013). 

20. C. Folberth, T. Gaiser, K. C. Abbaspour, R. Schulin, H. Yang, Regionalization of a large-scale crop growth model 
for sub-Saharan Africa: Model setup, evaluation, and estimation of maize yields, Agric. Ecosyst. Environ. 151, 21–
33 (2012). 

21. S. Asseng, F. Ewert, C. Rosenzweig, J. W. Jones, J. L. Hatfield, A. C. Ruane, K. J. Boote, P. J. Thorburn, R. P. 
Rötter, D. Cammarano, N. Brisson, B. Basso, P. Martre, P. K. Aggarwal, C. Angulo, P. Bertuzzi, C. Biernath, A. J. 
Challinor, J. Doltra, S. Gayler, R. Goldberg, R. Grant, L. Heng, J. Hooker, L. A. Hunt, J. Ingwersen, R. C. Izaurralde, K. 
C. Kersebaum, C. Müller, S. Naresh Kumar, C. Nendel, G. O’Leary, J. E. Olesen, T. M. Osborne, T. Palosuo, E. 



           Page 35 of 36 

 

Priesack, D. Ripoche, M. A. Semenov, I. Shcherbak, P. Steduto, C. Stöckle, P. Stratonovitch, T. Streck, I. Supit, F. 
Tao, M. Travasso, K. Waha, D. Wallach, J. W. White, J. R. Williams, J. Wolf, Uncertainty in simulating wheat yields 
under climate change, Nat. Clim. Chang. 3, 827–832 (2013). 

22. S. Bassu, N. Brisson, J.-L. Durand, K. Boote, J. Lizaso, J. W. Jones, C. Rosenzweig, A. C. Ruane, M. Adam, C. 
Baron, B. Basso, C. Biernath, H. Boogaard, S. Conijn, M. Corbeels, D. Deryng, G. De Sanctis, S. Gayler, P. Grassini, J. 
Hatfield, S. Hoek, C. Izaurralde, R. Jongschaap, A. R. Kemanian, K. C. Kersebaum, S.-H. Kim, N. S. Kumar, D. 
Makowski, C. Müller, C. Nendel, E. Priesack, M. V. Pravia, F. Sau, I. Shcherbak, F. Tao, E. Teixeira, D. Timlin, K. 
Waha, How do various maize crop models vary in their responses to climate change factors?, Glob. Chang. Biol. 
20, 2301–20 (2014). 

23. E. Blanc, The impact of climate change on crop yields in Sub-Saharan Africa, Am. J. Clim. Chang. 1, 1–13 (2012). 

24. B. Schauberger, C. Gornott, F. Wechsung, Global evaluation of a semi-empirical model for yield anomalies and 
application to within-season yield forecasting, Glob. Chang. Biol. (2017), doi:10.1111/gcb.13738. 

25. L. D. Estes, H. Beukes, B. a Bradley, S. R. Debats, M. Oppenheimer, A. C. Ruane, R. Schulze, M. Tadross, 
Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and 
mechanistic modeling approaches, Glob. Chang. Biol. 19, 3762–3774 (2013). 

26. D. B. Lobell, J. I. Ortiz-Monasterio, G. P. Asner, P. a. Matson, R. L. Naylor, W. P. Falcon, Analysis of wheat yield 
and climatic trends in Mexico, F. Crop. Res. 94, 250–256 (2005). 

27. D. B. Lobell, M. B. Burke, On the use of statistical models to predict crop yield responses to climate change, 
Agric. For. Meteorol. 150, 1443–1452 (2010). 

28. B. Liu, S. Asseng, C. Müller, F. Ewert, J. Elliott, D. B. Lobell, P. Martre, A. C. Ruane, D. Wallach, J. W. Jones, C. 
Rosenzweig, P. K. Aggarwal, P. D. Alderman, J. Anothai, B. Basso, C. Biernath, D. Cammarano, A. Challinor, D. 
Deryng, G. De Sanctis, J. Doltra, E. Fereres, C. Folberth, M. Garcia-Vila, S. Gayler, G. Hoogenboom, L. A. Hunt, R. C. 
Izaurralde, M. Jabloun, C. D. Jones, K. C. Kersebaum, B. A. Kimball, A.-K. Koehler, S. N. Kumar, C. Nendel, G. J. 
O’Leary, J. E. Olesen, M. J. Ottman, T. Palosuo, P. V. V. Prasad, E. Priesack, T. A. M. Pugh, M. Reynolds, E. E. Rezaei, 
R. P. Rötter, E. Schmid, M. A. Semenov, I. Shcherbak, E. Stehfest, C. O. Stöckle, P. Stratonovitch, T. Streck, I. Supit, 
F. Tao, P. Thorburn, K. Waha, G. W. Wall, E. Wang, J. W. White, J. Wolf, Z. Zhao, Y. Zhu, Similar estimates of 
temperature impacts on global wheat yield by three independent methods, Nat. Clim. Chang. 6, 1130–1136 
(2016). 

29. D. B. Lobell, S. Asseng, Comparing estimates of climate change impacts from process- based and statistical 
crop models, Environ. Res. Lett. 12, 1–12 (2017). 

30. C. Müller, J. Elliott, J. Chryssanthacopoulos, A. Arneth, J. Balkovic, P. Ciais, D. Deryng, C. Folberth, M. Glotter, S. 
Hoek, T. Iizumi, R. C. Izaurralde, C. Jones, N. Khabarov, P. Lawrence, W. Liu, S. Olin, T. A. M. Pugh, D. Ray, A. 
Reddy, C. Rosenzweig, A. C. Ruane, G. Sakurai, E. Schmid, R. Skalsky, C. X. Song, X. Wang, A. de Wit, H. Yang, 
Global Gridded Crop Model evaluation: benchmarking, skills, deficiencies and implications, Geosci. Model Dev. 
Discuss. , 1–39 (2016). 

31. R. P. Rötter, T. R. Carter, J. E. Olesen, J. R. Porter, Crop–climate models need an overhaul, Nat. Clim. Chang. 1, 
175–177 (2011). 

32. P. S. Ward, R. J. G. M. Florax, A. Flores-Lagunes, Climate change and agricultural productivity in Sub-Saharan 
Africa: A spatial sample selection model, Eur. Rev. Agric. Econ. 41, 199–226 (2014). 

33. J. D. Woodard, P. Garcia, Weather derivatives, spatial aggregation, and systemic risk: Implications for 
reinsurance hedging, J. Agric. Resour. Econ. 33, 34–51 (2008). 

34. R. Finger, Investigating the performance of different estimation techniques for crop yield data analysis in crop 
insurance applications, Agric. Econ. 44, 217–230 (2013). 

35. V. Krysanova, F. Hattermann, S. Huang, C. Hesse, T. Vetter, S. Liersch, H. Koch, Z. W. Kundzewicz, Modelling 
climate and land-use change impacts with SWIM: lessons learnt from multiple applications, Hydrol. Sci. J. 60, 606–
635 (2015). 

36. V. Krysanova, F. Wechsung, J. Arnold, R. Srinivasan, J. Williams, Soil and Water Integrated Model: User manual, 
Pik Rep. 69, 1–243 (2000). 

37. C. Gornott, F. Wechsung, Statistical regression models for assessing climate impacts on crop yields: A 
validation study for winter wheat and silage maize in Germany, Agric. For. Meteorol. 217, 89–100 (2016). 



           Page 36 of 36 

 

38. MAFSC, Agricultural statistics. Ministry of Agriculture, Food Security and Cooperatives (2010) (available at 
http://www.kilimo.go.tz/agricultural statistics/). 

39. G. P. Weedon, G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, P. Viterbo, Data methodology applied to ERA-
Interim reanalysis data, Water Resour. Res. 50, 7505–7514 (2014). 

40. Tanzania Meteorological Agency, Daily weather data 1970–2006, [not publicly available] (2007). 

41. A. Chipanshi, Y. Zhang, L. Kouadio, N. Newlands, A. Davidson, H. Hill, R. Warren, B. Qian, B. Daneshfar, F. 
Bedard, G. Reichert, Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season 
prediction of crop yield across the Canadian agricultural landscape, Agric. For. Meteorol. 206, 137–150 (2015). 

42. O. Dewitte, A. Jones, O. Spaargaren, H. Breuning-Madsen, M. Brossard, A. Dampha, J. Deckers, T. Gallali, S. 
Hallett, R. Jones, M. Kilasara, P. Le Roux, E. Michéli, L. Montanarella, L. Thiombiano, E. Van Ranst, M. Yemefack, R. 
Zougmore, Harmonisation of the soil map of Africa at the continental scale, Geoderma 211–212, 138–153 (2013). 

43. ILRI, Soil type distribution map of Tanzania (2005) (available at http://data.ilri.org/geoportal/ %3E Tanzania 
Soil). 

44. P. K. Thornton, P. G. Jones, G. Alagarswamy, J. Andresen, Spatial variation of crop yield response to climate 
change in East Africa, Glob. Environ. Chang. 19, 54–65 (2009). 

45. IFPRI, Agro-ecological zones of Sub-Saharan Africa (8-class) (2015) (available at 
https://harvestchoice.org/data/aez8_clas). 

46. FAO Crop Calendar, United Republic of Tanzania – Maize (2010) (available at 
http://www.fao.org/agriculture/seed/cropcalendar/). 

47. FAO Stat, FAO Stat database collections: Maize prices for Tanzania (2003-2010) (2013) (available at 
http://faostat3.fao.org/). 

48. V. Krysanova, F. Hattermann, S. Huang, C. Hesse, T. Vetter, S. Liersch, H. Koch, Z. W. Kundzewicz, Modelling 
climate and land-use change impacts with SWIM: lessons learnt from multiple applications, Hydrol. Sci. J. 60, 606–
635 (2015). 

49. C. Rosenzweig, J. Elliott, D. Deryng, A. C. Ruane, C. Müller, A. Arneth, K. J. Boote, C. Folberth, M. Glotter, N. 
Khabarov, K. Neumann, F. Piontek, T. a M. Pugh, E. Schmid, E. Stehfest, H. Yang, J. W. Jones, Assessing agricultural 
risks of climate change in the 21st century in a global gridded crop model intercomparison, Proc. Natl. Acad. Sci. 
111, 3268–3273 (2014). 

50. C. Folberth, H. Yang, T. Gaiser, K. C. Abbaspour, R. Schulin, Modeling maize yield responses to improvement in 
nutrient, water and cultivar inputs in sub-Saharan Africa, Agric. Syst. 119, 22–34 (2013). 

51. C. Folberth, R. Skalský, E. Moltchanova, J. Balkovič, L. B. Azevedo, M. Obersteiner, M. van der Velde, 
Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations, Nat. Commun. 7, 
11872 (2016). 

52. R. Rötter, S. C. Van de Geijn, Climate change effects on plant growth, crop yield and livestock, Clim. Chang. 43, 
651–681 (1999). 

53. T. Gaiser, I. de Barros, F. Sereke, F.-M. Lange, Validation and reliability of the EPIC model to simulate maize 
production in small-holder farming systems in tropical sub-humid West Africa and semi-arid Brazil, Agric. Ecosyst. 
Environ. 135, 318–327 (2010). 

54. C. R. McClung, Making hunger yield, Science 344, 699–700 (2014). 

55. E. Nkonya, W. Mwangi, The economic rationale of recycling hybrid seeds in Northern Tanzania, East. Afr. J. 
Rural Dev. 20, 113–124 (2004). 

56. O. T. Westengen, K. H. Ring, P. R. Berg, A. K. Brysting, Modern maize varieties going local in the semi-arid zone 
in Tanzania, BMC Evol. Biol. 14, 1 (2014). 

57. J. L. Lukeba, R. K. Vumilia, K. C. K. Nkongolo, M. L. Mwabila, M. Tsumbu, Growth and leaf area index simulation 
in maize (Zea mays L.) under small-scale farm conditions in a Sub-Saharan African region, Am. J. Plant Sci. 4, 575–
583 (2013). 

58. FAO, Crop water information: Maize (2015) (available at http://www.fao.org/nr/water/cropinfo_maize.html). 

59. World Bank, Tanzania national panel survey (2016) (available at http://go.worldbank.org/EJMAC1YDY0). 



           Page 37 of 36 

 

60. P. M. Vitousek, R. Naylor, T. Crews, M. B. David, L. E. Drinkwater, E. Holland, P. J. Johnes, J. Katzenberger, L. A. 
Martinelli, P. A. Matson, G. Nziguheba, D. Ojima, C. A. Palm, G. P. Robertson, P. A. Sanchez, A. R. Townsend, F. S. 
Zhang, Nutrient imbalances in agricultural development, Science 324, 1519–1520 (2009). 

61. P. Tittonell, K. E. Giller, When yield gaps are poverty traps: The paradigm of ecological intensification in African 
smallholder agriculture, F. Crop. Res. 143, 76–90 (2013). 

62. K. Harmsen, A modified mitscherlich equation for rainfed crop production in semi-arid areas: 1. Theory, NJAS - 
Wageningen J. Life Sci. 48, 237–250 (2000). 

63. R. K. Kaufmann, S. E. Snell, Biophysical Model of Corn Yield: Integrating Climatic and Social Determinants, Am. 
J. Agric. Econ. 79, 178–190 (1997). 

64. K. G. Cassman, A. Dobermann, D. T. Walters, H. Yang, Meeting Cereal Demand While Protecting Natural 
Resources and Improving Environmental Quality, Annu. Rev. Environ. Resour. 28, 315–358 (2003). 

65. M. van der Velde, C. Folberth, J. Balkovič, P. Ciais, S. Fritz, I. a. Janssens, M. Obersteiner, L. See, R. Skalský, W. 
Xiong, J. Peñuelas, African crop yield reductions due to increasingly unbalanced nitrogen and phosphorus 
consumption, Glob. Chang. Biol. 20, 1278–1288 (2014). 

66. L. You, C. Ringler, U. Wood-Sichra, R. Robertson, S. Wood, T. Zhu, G. Nelson, Z. Guo, Y. Sun, What is the 
irrigation potential for Africa? A combined biophysical and socioeconomic approach, Food Policy 36, 770–782 
(2011). 

67. NBS, National sample census of agriculture – Small holder agriculture. Volume II: crop sector – National report, 
Minist. Agric. Food Secur. Coop. Minist. Livest. Dev. Fish. Minist. Water Irrig. Minist. Agric. Livest. Environ. 
Zanzibar, Prime Minist. Off. Reg. Adm.  (2012). 

68. L. You, M. W. Rosegrant, S. Wood, D. Sun, Impact of growing season temperature on wheat productivity in 
China, Agric. For. Meteorol. 149, 1009–1014 (2009). 

69. K. Pauw, J. Thurlow, Agricultural growth, poverty, and nutrition in Tanzania, Food Policy 36, 795–804 (2011). 

70. N. Minot, T. Benson, Fertilizer subsidies in Africa - are vouchers the answer?, IFPRI Discuss. Pap. (2009). 

71. K. Deininger, S. Savastano, F. Xia, Smallholders’ land access in Sub-Saharan Africa: A new landscape?, Food 
Policy 67, 78–92 (2017). 

72. B. Dillon, C. B. Barrett, Agricultural factor markets in Sub-Saharan Africa: An updated view with formal tests for 
market failure, Food Policy 67, 64–77 (2017). 

73. F. Castellvi, P. J. Perez, C. O. Stockle, M. Ibanez, Methods for estimating vapor pressure deficit at a regional 
scale depending on data availability, Agric. For. Meteorol. 87, 243–252 (1997). 

74. P. Garcia, S. E. Offutt, M. Pinar, S. A. Changnon, Corn yield behavior: Effects of technological advance and 
weather conditions, J. Clim. Appl. Meteorol. 26, 1092–1102 (1987). 

75. C. Müller, R. D. Robertson, Projecting future crop productivity for global economic modeling, Agric. Econ. 45, 
37–50 (2014). 

76. T. Conradt, C. Gornott, F. Wechsung, Extending and improving regionalized winter wheat and silage maize 
yield regression models for Germany: Enhancing the predictive skill by panel definition through cluster analysis, 
Agric. For. Meteorol. 216, 68–81 (2016). 

77. Y. Croissant, G. Millo, Panel data econometrics in R: The plm package, J. Stat. Softw. 27 (2008). 

78. B. H. Baltagi, Econometric Analysis of Panel Data (John Wiley & Sons Ltd, Third edit., 2005). 

79. Y. Alem, M. Bezabih, M. Kassie, P. Zikhali, Does fertilizer use respond to rainfall variability? Panel data 
evidence from Ethiopia, Agric. Econ. 41, 165–175 (2010). 

 

 


	Del_4.3.1_Bio-physical and economic climate change risk assessment_p1
	SCENARIO_Trans-SEC_2

